- class sklearn.ensemble.RandomForestClassifier(\
- n_estimators=’warn’,\
- criterion=’gini’,\
- max_depth=None, \
- min_samples_split=2,\
- min_samples_leaf=1, \
- min_weight_fraction_leaf=0.0, \
- max_features=’auto’, \
- max_leaf_nodes=None, \
- min_impurity_decrease=0.0, \
- min_impurity_split=None, \
- bootstrap=True, \
- oob_score=False, \
- n_jobs=None, \
- random_state=None, \
- verbose=0, \
- warm_start=False, \
复制代码
随机森林(Random Forest)由Leo Breiman和Adele Cutler于2001年提出,属于Bagging类集成学习算法。其核心是通过双重随机性(数据抽样随机、特征选择随机)构建多棵决策树,最终通过集体决策降低过拟合风险。
|